8 Week Report

Hersh Aditya Samdani ep22b027
July 2024

Acknowledgements

I would like to express my sincerest gratitude to the Indian Academy of
Sciences for this invaluable opportunity to participate in such a concerted in-
terdisciplinary research project where I was able to learn not only physics but
also essentials of material science such as DFT. I am deeply to Prof. Nirat Ray
for her insight and constant help throughout the endeavour.

I would also like to thank the PhD scholars in the lab, especially Dr. Kiran
whose PhD defence I had the privilege to watch and Mr. Manjeet Godara.

I would also like to thank my family and friends who have always supported me
unconditionally and who gave me company throughout the summer.



1 Introduction

Condensed matter physics is the branch of physics that deals with the prop-
erties and phases of matter on both a microscopic and macroscopic level. An
exciting and upcoming research field is that of Topological States of Matter. The
field started off with the discovery of the Quantum Hall Effect by von Klitzing
[1] in 1980, followed by the fractional Quantum Hall Effect discovered by Tsui
et al [2] in 1982. The third paradigm-shifting discovery that is essential for
topological states was that of High Temperature Superconductivity by Bednorz
[3] in 1986. The last two discoveries are out of the scope of this report but it
is enough to say that the inability of symmetry breaking to explained them is
what led to the establishment of the field of topological states of matter.

Through the course of this two month internship, I studied quantum trans-
port through various physical systems, specifically using a python library called
Kwant.

2 Quantum Transport

2.1 Scattering Matrix

The scattering matrix is a crucial concept that connects the incoming and
outgoing states in a conductor. This matrix is a fundamental element computed
in mesoscopic transport simulations and encapsulates the key properties of such
systems.

Consider a coherent conductor with N attached leads or terminals. The to-
tal number of modes at a given energy FE can be expressed as the sum of the
modes in each individual lead:

where M;(E) represents the number of modes at energy E in lead j.

The scattering matrix S is an M x M matrix that connects the amplitudes
of the incoming and outgoing modes in the leads. Let a and b be M x 1 ma-
trices containing the amplitudes of incoming and outgoing modes, respectively.
The relationship is given by:

b = Sa.

For current conservation, the total incoming probability must equal the total
outgoing probability, i.e., Y., |am|?* = >, |bm|?. This can be expressed as
afa = bfb. From this, it follows that the scattering matrix S must be unitary.



A key application of the scattering matrix is in determining the transmission
probability of an electron from lead k to lead j (denoted as T in Eq. 1.24).
This transmission probability can be written in terms of S as:

Tin(E) =Y |Son|*.

n,n’

The unitarity of S implies that Zf\le |Smn|? = 1, ensuring that an electron
entering through mode n will always exit the conductor, thus preserving the
total probability.

2.2 Tight - Binding Models

This section aims to discuss the methods used in quantum transport simu-
lations of tight binding models. We use this approximation throughout to study
the properties of various systems.

The tight-binding approximation evaluates a Hamiltonian on a discrete lattice.
This works well in cases where, for example, a system where each lattice point
corresponds to an atom. There are also some limitations of the tight binding
model which will be elaborated later.

As an example, consider a situation described by the Hamiltonian H= p?/2m
where p = —thd, = hk. Let us use a one-dimensional chain of length L with
a lattice constant a. The lattice positions are z = ja, with j = 1,2,..., N and
the wave functions can be written as ¢; = ¥(z = ja). To discretise the deriva-
tive while we maintain the hermicity of the Hamilltonian, we ues the symmetric
finite difference equation [4]:

iR
D) lems; = = 50 (V1 = 1)

and
f)z w(x”a:x]: (¢j+1 - 2¢j +¢j—1)

so the Schrodinger’s equation can be rewritten as:

t(Yj41 — 20 + 1) = By

h2
a2

where t = h?/2m is the hopping amplitude and E is the energy. The rewritten
form of the Schrodinger equation can be expressed in matrix form and that is
the matrix that Kwant takes as an input.

Consider a scattering region with N semi-infinite leads attached to it, labeled
by a = 1,2, ..., N each hosting M, modes. If we take the scattering region to
be described by a single-particle tight-binding Hamiltonian:



H=> H,;|i){j|
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Let us consider that the scattering region is only attached to two leads: L, R
with HpandHpg representing the left and right lead Hamiltonians respectively.
Hopping beteween the nearest-neighnours are represented by Vi, Vg. For the
sake of simplicity we will consider all the other hopping terms to be zero. Then
the total Hamiltonian can be represented by:

H, Vs O
H=\|Vs; Hs Vggr
0 Vrs Hg

In order to obtain the energies and wave functions, we solve for the eigenvalue
of Hvy = E1, where 1 is the wave function and FE is the energy.

Hs—E Vg 0 0 N\ (s 0
Vi Hr—E Vi 0 R I S 0
0 VT HT —F Vjt ce ’l/)l = 0

0

0 0 Vr Hr—E --- o

, Here 1g is the wave function of the scattering region and and ; represents
the wave function in the i-th unit cell in the lead, starting from the scattering
region.

2.3 Wave Function Matching

Kwant, uses the Wave Function Matching (WFM) approach as the default
method to obtain the scattering matrix in transport simulations. The approach
solves the scattering problem by matching the fave function at the scattering
region with the modes in the leads as the name suggests. In order to solve the
above matrix, we introduce an eigenmode basis ¢;, with the sub-script signalling
the j-th unit cell away from the scattering region. This basis is of dimension
M, where My is the total number of modes in the lead. Therefore we can say:

Vrgj—1+ (Hr — E)o; + Vqt(ﬁjJrl =0

. The lead is semi-infinite and shows translational symmetry with a period given
by a unit cell. If we use Bloch’s theorem, we can express our eigenmode as

¢ = Nx



, where A = e**¢ with k being the wave vector, a the lattice constant and y is
a function that is independent of the unit cell altogether. By out choice of A we

are considering only propagating modes.

Introducing the auxiliary function: Xl = A"Wry, we get

(7 Y- D)

Here, I is the identity matrix.
Through detailed calculations, which are derived in [5] but not shown here,
it can be demonstrated that the current associated with a mode n is given by:

. 2
In = _ﬁlm()‘nXLVTXn)v

As utilized in Kwant , we will now distinguish between incoming modes, j,, > 0,
and outgoing modes, j, < 0. Evanescent modes, which do not carry current,
are treated equally in Kwant. However, for the purposes of this thesis, we will
ignore them as they do not contribute to the transmission.

We denote incoming modes with a ‘4’ superscript and outgoing ones with a
‘. The next step involves using x as a basis to express the wave function Y
in the j-th unit cell from the scattering region:
NP NP
b= > AV A + Y (A AN
n

n

where IV, is the number of propagating modes, which is less than or equal to
M7y since we are neglecting the evanescent modes, and At are the amplitudes
of the modes.

We define a scattering matrix S to relate these amplitudes: A} = SA; . The
final step is to express the wave function in the lead resulting from the incident
mode n as a function of S:

Np
Vi = (M) X + Z Snm (A ) X
m=1

With this, we can rewrite the incident mode n as:

(Hs — E)tos.n + Vitbon = 0, Vrsths n + (Hr — Ebo n + Vi1, = 0.

The subsequent steps involve extensive mathematical operations, which are not



reproduced here but can be found in [?]. Eventually, the following expression is

derived:
Hs—E Vix*\ (vs\ _ (-Vix~
Vrs _X/+ S )~ X/— )
with ¢s = (¥s1 $s2 -+ Ysn,)

It is important to note that S is not the normalized scattering matrix of in-
terest, as it is derived from unnormalized 1); and hence is not unitary. The full
scattering matrix elements S, are given by [?, ?]:

Snm = ﬁgnm-
\/ Im

Through this, we have shown how to compute the wave function in the scattering
region, g, and the scattering matrix S using the Wave Function Matching
(WFM) method. From these, other critical quantities, such as conductance and
the density of states, can be derived.

3 Topological Insulators

Topology is a discipline of mathematics that deals with properties of ob-
jects that remain unchanged under continuous deformations such as bending or
stretching. It is possible to transfer the idea of topology from mathematics in to
physics by associating the Hamiltonian of a physical system to the topology of a
surface. A good example of a topological invariant used in physics commonly is
called the Chern number C. It is defined as the intergral of the Berry curvature
over the Brillouin zone of a crystal. It behaves like a genus and is unchanging
under continuous deformations of the system by definition and so is very robust
against perturbations and independent of disorders in the experimental set up.
It is in fact this robustness that makes materials with topological properties
rather interesting for applications in computation and electronics.

Topological Insulators are materials with an ordinary bulk gap, much like a
traditional insulator, and gapless conducting edge states that are robust to
disorder, like mentioned above. In the case of three-dimensional Topoligcal
insulators, the surface state is a two-dimensional electron gas with potential
applications in computation, metrology etc.

3.1 Topological States of Matter

Phases of matter have traditionally been described based on the symmetries
they break, a phenomenon known as spontaneous symmetry breaking. This



includes examples such as the translation symmetry broken in solids with crys-
talline structures and the gauge symmetry broken in superconductors. Lan-
dau theory characterizes matter using an order parameter, which is a physical
quantity that assumes a non-zero value in the ordered phase and zero in the
disordered phase. This parameter is essential for analyzing phase transitions.
For example, in a ferromagnet, the order parameter is the magnetization.

In contrast, topological states of matter, such as the quantum-Hall and quantum-
spin-Hall states, are not described by local order parameters but by topological
invariants. These invariants are quantities that take on quantized values and re-
main unchanged under continuous and smooth transformations of the system’s
parameters.

This concept can be illustrated using the mathematical classification of two-
dimensional surfaces based on their genus. Consider a sphere and an ellipsoid:
their surfaces are topologically equivalent because their number of holes (zero)
remains constant when one is continuously deformed into the other. Similarly,
a cup and a doughnut are topologically equivalent since they both have a genus
of one, allowing them to be continuously transformed into one another.

In the realm of quantum systems and topological insulators, this idea trans-
lates to the notion that two Hamiltonians are topologically equivalent if they
can be adiabatically transformed into each other without closing the band gap.
If two materials have different topological invariants, they cannot be adiabati-
cally connected. Consequently, when such materials are brought into contact,
the band gap must close at the interface. This leads to the appearance of gap-
less conducting edge states, known as topological surface states (TSS), at the
boundary of the system. Topological surface states are the focus of this study,
as a topological insulator nanowire in contact with air or vacuum will exhibit
these states, given that air and vacuum are topologically trivial while the topo-
logical insulator is not.

3.2 Three-Dimensional Topological Insulators

In three-dimensional topological insulators (3D TIs), the surface states are
characterized by a Dirac cone dispersion, which arises from the linear relation-
ship between energy and momentum at the surface. These materials exhibit
insulating behavior in the bulk but possess robust, gapless surface states that
are protected by time-reversal symmetry. The Hamiltonian describing these
surface states typically takes the form

H = hl/F(]AfIO'w + fcyay)

where vp represents the Fermi velocity and o, and o, are Pauli matrices related



to spin. This Dirac-like dispersion leads to spin-momentum locking, where the
electron’s spin orientation is locked perpendicular to its momentum, resulting
in helical Dirac fermions.

The topological nature of 3D TIs is ensured by a Zs invariant, a mathemat-
ical property that remains unchanged under continuous deformations of the
system, provided time-reversal symmetry is maintained. This invariant guaran-
tees the existence of the surface states and protects them from perturbations
such as non-magnetic impurities and structural disorder. Consequently, the sur-
face states of 3D TIs exhibit resilience to backscattering, making them ideal for
applications in low-dissipation electronic devices.

Furthermore, the unique properties of 3D TIs open up avenues for realizing
novel quantum phenomena. For example, when a 3D TI is placed in proximity
to a superconductor, it can host Majorana fermions—quasiparticles that are
their own antiparticles and are of great interest for topological quantum com-
puting. The interplay between topological insulators and magnetic materials
can lead to the quantum anomalous Hall effect, where edge states carry current
without an external magnetic field, promising advancements in spintronics.

Additionally, 3D TIs have been investigated for their potential in thermoelec-
tric applications. The presence of robust surface states contributes to enhanced
thermoelectric efficiency, as they can provide high electrical conductivity while
maintaining low thermal conductivity. This dual capability makes 3D TIs suit-
able candidates for energy conversion technologies.

4 Kwant

In this section, we will first define Kwant. It is an open source Python
package that is used for numerical calculations on tight-binding models and
quantum transport simulations[]. It does the calculations by using the wave
function matching method, as described in a previous section.

We will now go over a Kwant example, to see how it works at a basic level
and then use some of its functionality to simplify the simulation code.

4.1 Conductance for a simple system

In this example we compute the transmission probability through a two-
dimensional quantum wire. The wire is described by the two-dimensional Schrodinger
equation:



Where V(y) is a hard wall confinement in the y-direction.

To implement the quantum wire with Kwant, the continuous Hamiltonian H
has to be discretized to turn it into a tight-binding mode. For the sake of sim-
plicity, we discretize it on sites of the square lattice with lattice constant a. So,
a point with the integer lattice constants (z,y) has the real space coordinates
(ai,aj). As we had discussed before, the Hamiltonian becomes

H= Z[(V(ai»aj)+4t)|i,j><i7J’I—t(li+17j><i,j\)+\i7j><i+1,j|+\i,j+1>(i7j|+|i,j><i7j+1|}

with

h2
t =
2ma?

The code and the explanation are as shown:

import kwant
syst = kwant.Builder()

Trivially, we first import kwant to enable it. We then define the tight bind-
ing system by creating an instance of the Builder class.

Naturally, the next stop is to specify the type of sites we want to add to the
system. We are using a basic square lattice here. Once again, for simplicity, we
set the lattice constatn a to unity.

a=1
lat = kwant.lattice.square(a, norbs=1)

In specifying norbs = 1, we tell Kwant that there is 1 degree of freedom.

Now we build a rectangular scattering region that is W lattice points wide
and L lattice points wide.

t=1.0

W, L = 10, 30

for i in range(L):

for j in range(W):

systllat(i, j)] =4 * t

ifj > 0:

syst[lat(i, j), lat(i, j - 1)] = -t
ifi>0:

syst[lat(i, j), lat(i- 1, j)] = -t




This implements the on-site Hamiltonian component:
> _(Viai,aj) + 4t)li, ) (i, j|
,J
And the hopping in the x-direction is:
Y —t(li+ 1,50 (] + 1, )6+ 1, 5])
4]
They y-direction hopping is represented by:
Y =t d 4+ 1) ]+ 16,45 + 1)
4,J

The hard-wall confinement that V' (y) represents is realised by not having hop-
ping and sites beyond a certain region of space.

Next, we define the leads, here we can use Builder but instead here we take
advantage of the translational symmetry:

sym _left lead = kwant.TranslationalSymmetry((-a, 0))
left_lead = kwant.Builder(sym left lead)

The vector (—a,0) defines the translational symmetry in a direction away from
the scattering region and into the lead.

for j in range(W):

left lead[lat(0, j)] = 4 * ¢

if j > 0:

left_lead[lat(0, j), lat(0, j - 1)] = -t
left lead[lat(1, j), lat(0, j)] = -t
syst.attach_lead(left_lead)

This finished up adding the left lead. We can define the right lead similarly, but
once more Kwant has functionality to attach it more easily.

’ syst.attach_lead(left_lead.reversed()) ‘

’ kwant.plot(syst); ‘

This plots the lattice:

In order to do our transport calculations we finalize the system using syst. finalized().
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energies = ||

data = |]

for ie in range(100):

energy = ie * 0.01

smatrix = kwant.smatrix(syst, energy)
energies.append(energy)

data.append (smatrix.transmission(1, 0))

We can have values of conductance as a function of energy. Plotting the data
gives us:
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5 Theoretical Framework

The hybrid superconductor-semiconductor nanowire system is a leading can-
didate for the realization, control, and manipulation of Majorana zero modes
(MZMs) for topological quantum information processing. MZMs can be en-
gineered in these hybrid nanowire systems by leveraging the one-dimensional
nature of the nanowire, strong spin—orbit coupling, superconductivity, and ap-
propriate external electric and magnetic fields to control the chemical potential
and Zeeman energy, respectively, driving the system into a topologically non-
trivial phase [6]. To induce superconductivity in the semiconductor nanowire,
it must be coupled to a superconductor. The electronic coupling between the
nanowire and the superconductor induces superconductivity in the nanowire, a
phenomenon known as the proximity effect. Following this approach, the first
signatures of MZMs were observed in these hybrid systems, characterized by a
zero-bias peak (ZBP) in the tunneling conductance spectrum [7].

Of late, it has been found that the coupling depends substantially on the con-
finement induced by external electric fields. We explore how the change in
coupling affects the renormalization of material parameters such as the effective
g-factor, spin-orbit interaction etc.

To obtain information about Deunsity of States (DOS) in the proximitized nanowire,
we measure the differential conductance dI/dVj;qs as a function of applied bias
voltage Vpias. A magnetic field is applied along the nanowire direction (x -axis).

5.1 Our System

In our system, we consider a nanowire oriented along the z-direction, with
a hexagonal cross section in the yz-plane. The hybrid superconductor-nanowire
system is described by the BAG Hamiltonian:

h2k2?
2m*

1
H=| —p—ed| T+ oy (kyop —kyo, ) o+, (kyoy —kyoy) TZ+§ gupBo,+AT,

The first term contains contributions from the kinetic energy, chemical potential
and electrostatic potential. The second and third terms describe the Rashba
spin-orbit coupling with the coupling strength a,; depending on the i-component
of the electric field. The fourth term is the Zeeman energy contribution and is
proportional to the Landé g-factor. The fifth term represents the superconduct-
ing pairing A.
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Figure 1: Simplified Geometry that we use in the simulation.

When the coupling between the superconductor and semiconductor is weak
(compared to the superconductor’s bulk gap ), superconductivity can be treated
as a constant pairing potential term in the nanowire Hamiltonian, with the in-
duced superconducting gap being proportional to the coupling strength. In cases
of strong coupling, the wave functions of the two materials hybridize, requiring
a simultaneous solution of the Schrodinger equation in both materials. The or-
bital effect of the magnetic field can be incorporated via Peierls substitution.

The electrostatic potential in the nanowire cross-section is calculated from the
Poisson equation, assuming an infinitely long wire. A fixed potential at the
dielectric-substrate interface serves as one boundary condition, while the su-
perconductor provides the second boundary condition, accounting for the work
function difference. The mobile charges in the nanowire are approximated using
the Thomas-Fermi method, which aligns well with results from self-consistent
Schrodinger-Poisson simulations. The calculated potential for a given gate volt-
age is then incorporated into the Hamiltonian.

5.1.1 Zeeman Term

We define the effective g-factor as geys = ;%B|%|’ so the gy is essentially
proportional to the absolute value of V vs B at the differential conductance
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Figure 2: Differential conductance as a function of Vbias and B. Applying a
linear fit gives us average slope required

peaks.

5.1.2 Spin-Orbit Coupling

The strength of the coupling is determined by « which is dependent on the
material and the electric field [8].

For a = 0 there is no coupling between states, and no level repulsion occurs.
However as a increases, the levels repel each other, providing us a way to esti-
mate « in the low energy region by the anticrossing energy 20 ~ awn/I .
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Figure 3: Low Energy Spectrum as a function of Zeeman Energy.

0.6
0.3
e
@ 0.0 -
S
_0.3-
—_— Qy
— az
—0.6 1 .

-0.5 O:O 0.5
VGate (V)

Figure 4: The Rashba coefficients as a function of V,ate

15



5.2 Results

We make use of the constants provided and the fits obtained out to find the
differential conductance as a function of the applied electric field.

Differential Conductance vs Gate Voltage (B = 0.26T) Differential Conductance vs Gate Voltage (B = 1.26T)
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Figure 5: dI/dV as a function of V for different magnetic fields.

In the figures obtained above, we see only one peak and that is a zero bias
peak. We can also see the increase in differential conductance magnitude with
increase in magnetic field.

On taking into account that the physical parameters are also applied poten-
tial and magnetic field dependent, we get similar plots but with a lot more
peaks as shown.

Although the trends are clearly visible, the values obtained here do not ex-
actly match those of the paper. This can be attributed to the fact that not all
the variables’ values were given so I picked up a few from existing literature.
Also for the terms that were potential dependent, the exact value of the fit was
not explicitly mentioned so I made my best guess.

5.2.1 Conclusions

We saw that appropriate tuning of the repulsion leads to a zero bias peak,
mimicking the behaviour expected from Majorana Zero Modes, since MZMs are
predicted to lead to a zero energy state, so electrons tunneling into an MZM
system should show a ZBP. However this in itself is not enough to sufficiently
confirm the existence of a Majorana mode. We need to make further experimen-
tal checks, such as the stability of the ZBP in an extended region of parameter
space, spanned by relevant gate voltages and magnetic fields.
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Differential Conductance vs Gate Voltage (B = 0.26T) Differential Conductance vs Gate Voltage (B = 0.36T)

0.07

Differential Conductance
Differential Conductance

-20 -15 -1.0 -05 00 0.5 1.0 15 2.0 -1.00 -0.75 =050 =025 000 025 050 075 100
Gate Voltage Gate Veltage

Figure 6: dI/dV as a function of V for different magnetic fields, taking variable
parameters into account.
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